Patents

Cover Gallery

Challenges in Water Electrolyzer
Challenges in Water Electrolyzer
Ru-Embedded Carbon Fabric
Ru-Embedded Carbon Fabric
Amine Chemistry of Porous CO2 Adsorbents
Amine Chemistry of Porous CO2 Adsorbents
Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia
Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia
How Reproducible are Surface Areas Calculated from the BET Equation?
How Reproducible are Surface Areas Calculated from the BET Equation?
Extensive Screening of Solvent-linked Porous Polymers through Friedel-Crafts Reaction for Gas Adsorption
Extensive Screening of Solvent-linked Porous Polymers through Friedel-Crafts Reaction for Gas Adsorption
Alkyl-linked porphyrin porous polymers for gas capture and precious metal adsorption
Alkyl-linked porphyrin porous polymers for gas capture and precious metal adsorption
Quantifying the nitrogen effect on CO2 capture using isoporous network polymers
Quantifying the nitrogen effect on CO2 capture using isoporous network polymers
Direct Access to Primary Amines and Particle Morphology Control in Nanoporous CO2 Sorbents
Direct Access to Primary Amines and Particle Morphology Control in Nanoporous CO2 Sorbents
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
  • nnentitelbild: Covalent Scrambling in Porous Polyarylthioethers through a Stepwise SNAr for Tunable Bandgap and Porosity

    Doyun Kim, Thien S Nguyen, Hyejeong Lee, Bolormaa Bayarkhuu, Vepa Rozyyev, Jeehye Byun, Sheng Li, Cafer T Yavuz
    Angewandte Chemie,135,28,e202306118
    2023
    nnentitelbild: Covalent Scrambling in Porous Polyarylthioethers through a Stepwise SNAr for Tunable Bandgap and Porosity
    A polycondensation reaction constitutes the simplest route to generating porous poly(aryl thioether)s. Through a multi-para-nucleophilic substitution of perfluoroaromatic compounds with sodium sulfide, temperature-dependent formation of thioether linkages leads to stepwise transition of the polymers into network structures with controllable porosity and bandgap, as reported by Jeehye Byun, Sheng Li, Cafer T. Yavuz, and co-workers in their Research Article (e202304378).
  • Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization

    Zhiling Xiang, Congyan Liu, Chunhui Chen, Xin Xiao, Thien S Nguyen, Cafer T Yavuz, Qiang Xu, Bo Liu
    Cell Reports Physical Science, 4, 101383
    2023
    Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization
    Reversible CO2 capture and release under ambient conditions is crucial for energy-efficient carbon capture and storage. Here, we report the pressure swing crystallization of CO2 in a single-crystalline guanidinium sulfate-based clathrate salt under practical conditions of 52 kPa and 298 K, with a high CO2 density (0.252 g cm3 ) and capacity (17 wt %). The captured CO2 is released as a pure stream through moderate means of pressure or temperature stimulation, all while the desorbed Gua2SO4 is ready for another cycle. The clathrate is selective exclusively to CO2 even in the presence of common flue gas components, such as water vapor and N2, owing to the specific electrostatic interaction between the CO2 and guanidinium cations. The mechanism unraveled through single-crystal studies is distinctively different from physisorption or chemisorption, opening up a promising venue for future carbon capture and storage technologies through rapid CO2 solidification using an abundant salt.
  • Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts

    Seok-Jin Kim, Thien Si Nguyen, Javeed Mahmood, Cafer T Yavuz
    Chemical Engineering Journal, 463,142474
    2023
    Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts
    Catalytic ammonia decomposition enables ammonia to be a hydrogen gas carrier for a carbon-free fuel economy. The challenge is to obtain high conversion yields and rates at low temperatures for a prolonged time. A promising approach is to engineer a catalyst support to minimize deleterious effects like sintering. Here, we compared a conventional 2D planar porous framework support with a vertically standing 2D structure to ascertain the effects of support geometry on the catalytic performance. The catalysts were made by loading ruthenium (Ru) nanoparticles onto the structures, and the catalytic activities were monitored by varying the ammonia (NH3) feeding rate and reaction temperature. Unlike the planar version, the vertically standing 2D support prevented nanoparticle aggregation, retained the original nanoparticle size, and showed an excellent hydrogen production rate (95.17 mmol gRu−1 min−1) at a high flow rate of 32,000 mL gcat−1 h−1 at a temperature of 450 °C.
  • Selective palladium recovery by a highly porous polyisothiocyanurate

    Thien S Nguyen, Cafer T Yavuz
    Chem,8,7,1793-1796
    2022
    Selective palladium recovery by a highly porous polyisothiocyanurate
    Precious metals, particularly palladium (Pd), are in short supply, and their effective recovery from waste depends on metal-specific adsorbents that provide energy-efficient and environmentally friendly solutions. In this issue of Chem, Coskun and co-workers introduce a new porous organic polymer with exceptional porosity and stability and record-high capacity and selectivity toward Pd.
  • How to reach carbon emission targets with technology and public awareness

    Cafer T Yavuz
    Matter
    2022
    How to reach carbon emission targets with technology and public awareness
    Our best option in curbing greenhouse gas emissions is to include heavy carbon emitters in a viable, sustainable, transitional solution based on a versatile syngas-based circular carbon economy and to establish a universal carbon emissions metric rather than fighting an endless war of politics, policies, and empty promises.
  • Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide

    Pravin Babar, Komal Patil, Javeed Mahmood, Seok-jin Kim, Jin Hyeok Kim, Cafer T Yavuz
    Cell Reports Physical Science,3, 2, 100762
    2022
    Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide
    Interface engineering is a powerful strategy for modulating electronic structure and enhancing intrinsic activity of electrocatalysts for water splitting. Here, we grow two-dimensional cobalt-iron hydroxide (CoFe-OH) nanosheets on nickel foam substrates and deposit FeOOH nanoparticles in a rapid and scalable wet chemical approach. The CoFe-OH@FeOOH nanocomposite features abundant active sites and high surface area, allowing fast kinetics for electrochemical water splitting. The electrode has a low overpotential value of 200 mV at 50 mA cm−2 for oxygen evolution. When used as both anode and cathode for overall water splitting, CoFe-OH@FeOOH provides a low cell voltage of 1.56 V to deliver 10 mA cm−2 current density. The synergistic activity is presumed to be from the seamless interface of CoFe-OH and FeOOH, improving conductivity and mass transfer. We envision that this simple approach may offer a new direction for designing efficient electrodes for energy conversion applications.
  • Metal Oxide Supported Catalyst for Dry Reforming and Method of Preparing Syngas Using the Same

    App# 10-2016-0100271 and 10-2017-0099675, 2016.
    C. T. Yavuz, Y. Song, E. Ozdemir
    he present invention relates to: a dry reforming catalyst in which an active material is impregnated on the surface of a metal oxide support, wherein the active material is surrounded by a surfactant; a method for preparing the same; and a method for preparing a synthetic gas by using the catalyst. Since the surfactant on the surface of the active material prevents sintering of the active material and a phenomenon of covering the active surface with carbon, the dry reforming catalyst exhibits high activity for a long time at a high temperature without using a noble metal, thereby being useful in the preparation of a synthesis gas.
    Registered
  • Electroless for efficient recovery of the adsorbed noble metal in the porphyrin polymer-coated porous method

    App # 10-2017-0170184 and 10-2018-0129227 and 10-2018-0162181, 2017.
    C. T. Yavuz, Y. Hong
    he present invention relates to a porous porphyrin polymer and a method for recovering precious metal elements using the same, wherein the porous porphyrin polymer of chemical formula 1, having high selectivity and adsorptivity with respect to precious metal elements, can be applied to the recovery of precious metal elements from a metal leachate of electronic product waste, river water or sea water.
    Registered
  • Novel heterogeneous organic catalyst with pyridyl salicylimine for selective cyclic carbonate formation

    App # 10-2019-0021112, 2019.
    C. T. Yavuz, S. Subramanian
    he present invention relates to a heterogeneous organic catalyst with pyridyl salicylimine and a method for producing a cyclic carbonate using the same. More particularly, it is possible to selectively and continuously synthesize a cyclic carbonate from carbon dioxide and epoxy compounds by using a heterogeneous organic polymer with a novel pyridyl salicylimine functional group as a catalyst, under a relatively mild condition of normal pressure and mild temperature, without additives such as a solvent or a cocatalyst.
    Unexamined

Contact us now

Looking forward to creating value with you

Learn More >>